Code No.: 13458 S O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. (E.C.E.) III-Semester Supplementary Examinations, August-2023

Network Analysis and Transmission Lines

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO/PSO
1.	State the maximum power transfer theorem	2	1	1	1,PSO
2.	Find the Y_{12} and Y_{21} parameters for the T network shown in below figure.	2	3	1	2, PSO
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		
3.	What is the significance of initial conditions of energy storing elements in circuit analysis	2	1	2	1, PSO 1
4.	Differentiate between Zero State Response and Zero Input Response	2	2	2	1, PSO 1
5.	Determine the cut-off frequency of the constant k-filter given in the below figure.	2	3	4	2, PSO 1
	L=25mH L=25mH C=1.5nF				
6.	What is meant by resonance? Differentiate between series and parallel resonance circuits.	2	2	3	1, PSO 1
7.	Define wavelength and velocity of propagation of a transmission line	2	1	5	1, PSO 1
8.	How to eliminate the frequency distortion that occur in transmission lines	2	2		1, PSO 1
9.	Give the significance of Smith Chart.	2	1	6	1, PSO 1
10.	What is the value of characteristic impedance of a quarter wave ransmission line to match 120 ohm load to the 75 ohm line	2	2	6	1, PSO 1

	Part-B $(5 \times 8 = 40 \text{ Marks})$	Marie 118 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
11. a)	Describe reciprocity theorem and derive the condition for reciprocity of a two port network	4	2	1	1, PSO 1
b)	Find the h parameters of the network given below.	4	3	1	2, PSO 1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
12. a)	Evaluate the time constant of an RL circuit.	4	2	2	1, PSO 1
b)	Find $v(t)$ for $t \ge 0$. Calculate the initial energy stored in the capacitor.	4	3	2	2, PSO 1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
13. a)	Design a T-section m-derived high pass filter with a cutoff frequency of f_c =20KHz, design impedance of 400 Ω and given m=0.2.	4	3	4	2, PSO 1
b)	A series resonant circuit has R=2 Ω , L=1mH and C=0.3 μ F. Determine the bandwidth, resonant frequency and Q factor when the input signal of $20\sin\omega t$ is applied.	4	3	3	2, PSO 1
14. a)	Derive an input impedance expression for short and open circuited transmission lines	4	2	5	3, PSO 1
b)	The Characteristic Impedance of a uniform transmission line is 2039.6 Ω at a frequency of 800Hz. At this frequency the propagation constant was found to be $0.054 \angle 87.9^{\circ}\Omega$. Determine the values of primary constants.	4	3	5	2, PSO 1
15. a)	Determine the input impedance for $\lambda/2, \lambda/4, \lambda/8$ lines and brief their characteristics	4	2	6	3, PSO 1
b)	Compute the VSWR of a 75 ohm transmission line when it is terminated by a load impedance of 50+j30 ohm	4	3	6	2, PSO 1

Code No.: 13458 S O

16. a	Explain the impedance parameters and convert Z-parameters to h-parameters	4	1	1	1, PSO 1
b	The switch in the circuit of figure shown below has been closed for a long time. At $t=0$, the switch is opened. Calculate $i(t)$ and V_L at $t=1$ ms.	4	3	2	2, PSO 1
	$ \begin{array}{c c} 2\Omega & \stackrel{t=0}{\longrightarrow} & 4\Omega \\ & & & & & \downarrow i(t) \\ \hline & 40 \text{ V} & & & \downarrow 12\Omega & & \downarrow 16\Omega & & \downarrow 2 \text{ H} \end{array} $				
17.	Answer any <i>two</i> of the following:				
a)	Draw the block diagram of composite filter and explain each block	4	1	4	1, PSO 1
b)	Prove that a transmission line of finite length terminated by its characteristic impedance is equivalent to an infinite line.	4	2	5	3, PSO 1
c)	Outline the significance of impedance matching and list various impedance matching devices used in transmission lines	4	2	6	1, PSO 1

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
